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SUMMARY

The lattice-Boltzmann (LB) method, derived from lattice gas automata, is a relatively new technique for
studying transport problems. The LB method is investigated for its accuracy to study fluid dynamics and
dispersion problems. Two problems of relevance to flow and dispersion in porous media are addressed:
(i) Poiseuille flow between parallel plates (which is analogous to flow in pore throats in two-dimensional
porous networks), and (ii) flow through an expansion–contraction geometry (which is analogous to flow
in pore bodies in two-dimensional porous networks). The results obtained from the LB simulations are
compared with analytical solutions when available, and with solutions obtained from a finite element
code (FIDAP) when analytical results are not available. Excellent agreement is found between the LB
results and the analytical/FIDAP solutions in most cases, indicating the utility of the lattice-Boltzmann
method for solving fluid dynamics and dispersion problems. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice-Boltzmann (LB) method was first proposed by McNamara and Zanetti [1] and is
a relatively new method for solving flow problems. The method was modified by Higuera and
Jimenez [2] when they introduced a linearized collision operator. Further generalizations by
Chen et al. [3] and Qian et al. [4] ensure that the equilibrium distribution is isotropic, Galilean
invariant and that the pressure is velocity independent. All these models [3–5] use the single
relaxation time approximation first introduced by Bhatnager et al. [6]. A wide range of
problems have been studied using the LB method, including viscous flows [1–4], multiphase
flows [7,8], magnetohydrodynamics [9] and chemically reacting flows [10].

The LB technique is purely local and parallel in nature, and is an active research topic
because of the huge interest in increasing the speed of computations using parallel architecture.
The LB method approaches fluid dynamics from the microscopic kinetic level and may be
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interpreted as a finite difference solution of the discrete velocity Boltzmann equation utilizing
a linearized collision operator. In more general terms, the LB method denotes any numerical
method that solves a Boltzmann equation for an ensemble-averaged distribution of moving,
interacting particles on a lattice. The LB equation describes the evolution of particle popula-
tions rather than the motions of individual particles. The evolution is determined so that the
Navier–Stokes equation is recovered in a Chapman–Enskog expansion [11].

The LB scheme consists of a particle-streaming step followed by a collision. It results in a
simple logic that is easily implemented on parallel computers. The loads on the different nodes
in a parallel computer are automatically balanced since approximately the same numbers of
operations are carried out at each lattice node.

This paper is interested in the utility and accuracy of the LB method as a potential
alternative to other conventional approaches to study fluid flow problems. The focus of this
research has been to test the accuracy of the LB method in flow geometry commonly
encountered in the study of flow in porous media. With this aim, the LB method has been
applied to study two specific problems: (i) Poiseuille flow between two parallel plates, and (ii)
flow through an expansion–contraction (or dilation) geometry. In the pore bodies, study of
the recirculations are very important because they trap the contaminants, which makes it
difficult to clean a porous media. A study of the recirculations in expansion–contraction
geometry using the finite element method was carried out by Ruth and Ma [12]. A study of
recirculations in the flow using the LB method around an octagonal cylinder was performed
by Noble et al. [13].

In the present work, the accuracy of the LB method is gauged by comparing the LB results
with analytical solutions where available and with results generated by a finite element code
called FIDAP (Fluid Dynamics International, Inc.). The LB method has also been used to
study transient flow problems. The LB calculations were carried out on the CM-5 Connection
Machine.

2. THEORY

The LB method employed in this work uses a nine-speed, square lattice. The nine vectors are
(see Figure 1):

e0,0= (0, 0), (1)

e1,i=
�

cos
2p(i−1)

8
, sin

2p(i−1)
8

�
, i=1, 2, 3, 4, (2)

Figure 1. The nine-speed square lattice used in the lattice Boltzmann simulations carried out in this paper. Unit
vectors directions in the nine-speed model are shown in the inset.
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The discretized Boltzmann equation employed has the form

fsi(x+esi, t+1)− fsi(x, t)=Vsi, (4)

where fsi is the particle distribution function; the subscripts s and i refer to the type of particle
and velocity direction respectively. Vsi is the collision operator representing the rate of change
of the particle distributions due to collisions, and is given by

Vsi= −
1
t

[ fsi(x, t)− fsi
eq(x, t)], (5)

where t is the single relaxation time that controls the rate of approach to equilibrium and fsi
eq

is the equilibrium particle distribution function.
The mean density and velocity of the LB fluid particles are given by
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The equilibrium particle distribution functions used in this work are
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For the above equilibrium distribution, the velocity of sound is

cs=
'3

7
. (11)

It is interesting to note that the velocity of sound is independent of the compressibility of the
LB fluid. This means that a disturbance in the fluid will always move with constant velocity.

In the lattice-Boltzmann method, LB fluid particles with mass distributed in all nine vector
directions exist at each site (not to be confused with the particles or mass of the actual fluid).
Collisions of LB fluid particles take place at each site followed by the redistribution of mass
and momentum along each direction; this is followed by the streaming step. This process is
known to recover the Navier–Stokes equation for the solvent and the convection–diffusion
equation for the tracer.

In order for a comparison with the real fluids, it is necessary only to match the Reynolds
number and geometry in the LB simulations for incompressible flow. The physical velocity and
pressure fields can be expressed in terms of dimensionless velocity and pressure in the LB
method calculations.
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2.1. Reco6ery of Na6ier–Stokes equations using the LB method

The incompressible Navier–Stokes equations can be recovered from the LB technique in a
Chapman–Enskog expansion in the Knudsen number d [11]:

(t(rua)+(b(ruaub)= −(a(p)+d(b(2nrSab)−d(b

�
t−

1
2
�
(g(ruaubug)+O(d2), (12)

where

Sab=
1
2

((aub+(bua), a, b, g=1, 2, (13)

and t is the relaxation time.
It may be seen that if the last two terms of O(du3) and O(d2) in Equation (13) are ignored,

the following equations are obtained:

(t(rua)+(b(ruaub)= −(a(p)+d(b(2nrSab), a, b=1, 2. (14)

The kinematic viscosity, n, for the square lattice is given by

n=
2t−1

6
. (15)

The incompressible Navier–Stokes equation can be approximated if the velocity of the fluid is
much less than the velocity of the sound, thereby making the term O(du3) negligibly small, and
by choosing a finer lattice, which will make the term O(d2) smaller. The presence of the error
terms in the above equations produces compressibility effects in the LB fluid, and the amount
of compressibility is dependent on the Mach number. Further, it can be seen in Equation (12)
that for one-dimensional flows, the term O(du3) becomes equal to zero.

2.2. Boundary conditions for the flow problem

A major challenge in the accurate application of the LB method has been the implementa-
tion of the appropriate boundary conditions. The simple bounce back boundary condition that
is directly taken from the lattice gas method is of first-order accuracy in space and time
[14–17]. Skordos [18] suggested a boundary condition based on a finite difference scheme
which is of second-order accuracy in space and time. This, however, requires the numerical
computation of expensive finite differences. Noble et al. [19,20] recently proposed a new
boundary condition, which is mathematically rigorous and produces results of greater accu-
racy. In the case of the square lattice, however, these boundary conditions can only be applied
on vertical or horizontal walls. They cannot be applied at the corners, where the system
becomes either over- or underdetermined.

Note that in the case of bounce back, the wall is located half way between the row/column
of nodes adjacent to the wall [16]. However, in the case of the energy boundary condition
introduced by Noble et al., the lattice nodes are located exactly on the walls (see Figure 2).

A nine-speed square lattice is used in this work. The fluid is at rest initially, so that the initial
distribution functions are set equal to their equilibrium values. In the case of the boundary
conditions introduced by Noble et al. [19,20], where in general boundary nodes can have zero
velocity (at walls) or non-zero velocity (at inlet or at outlet), incoming unknown distributions
can be calculated by solving the following set of equations for the three undetermined
distributions and the density of the LB fluid particle, r :

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 801–819 (1999)
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Figure 2. Location of the wall in the case of (a) energy boundary condition introduced by Noble et al., (b) bounce
back boundary condition.

f11+ f12+ f14+2f21+2f22+2f23+2f24=2ro+r(Vx
2 +Vy

2), (16)

f11+ f12+ f13+ f14+ f21+ f22+ f23+ f24=r, (17)

f11+ f12+ f21+ f24− f22− f23=rVx, (18)

f12− f14+ f21− f24+ f22− f23=rVy, (19)

o=c s
2−tc s

2(9 ·u)d+o(d2). (20)

3. RESULTS FOR FLOW

3.1. Results of Poiseuille flow in a channel

The LB method has been used to study Poiseuille flow in a channel by various other
authors. For completeness, results for Poiseuille flow using (a) bounce back and (b) energy
boundary condition proposed by Noble et al. [19,20] are presented. Figure 3 shows the
co-ordinates of the various points of the channel on a 41×1000 lattice.

Figure 4(a) and (b) shows the velocity profiles for the bounce back and the energy boundary
conditions respectively. The simulation was carried out on a 41×1000 lattice for a Reynolds
number of 50. The initial condition for the LB simulation was a liquid of uniform density at
rest. A parabolic velocity profile with a maximum velocity of 0.1 at the centerline was imposed
at the inlet (x=1) and outlet (x=1000) of the channel. Note that since the walls are located
between two lattice rows for bounce back boundary conditions, a lattice width containing 41
nodes in the domain corresponds to a width of 41. In the case of the energy boundary
condition, a lattice width containing 41 nodes corresponds to a width of 40. In order to have
the same Reynolds number in the two cases, a slightly different value of t was used in the two
simulations.

3.2. Results of flow through a dilation

The LB method has been applied to study flow in the expansion–contraction geometry as
a preliminary step to studying the transport of chemical species in the porous media, where
recirculations are often present. Figure 3(b) shows the co-ordinates of various points on a
241×1000 lattice of the expansion–contraction geometry.

The initial condition for LB simulation was a liquid of uniform density at rest. A parabolic
velocity profile, with a center velocity of 0.1, was then imposed at the entrance (x=1) and at
the outlet (x=1000). For the chosen value of t, this corresponds to a Reynolds number of 50.
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Excellent agreement was found between the LB simulation results for the steady state velocity
profiles using both the bounce back as well as the energy boundary conditions and the results
obtained from FIDAP. A comparison between the LB method and FIDAP results for the x
and y components of the velocity at x=520 along the y-axis is shown in Figure 5(a)–(d)
(using the bounce back as well as the energy boundary conditions). The flow in a expansion–
contraction geometry is characterized by a quasi-parabolic, time-independent velocity profile.
Large recirculation vortices develop on either side of the expansion–contraction geometry, as
can be seen in Figure 6. These vortices moderate the rate of mass transfer from the walls of
the cavity to the channel. Note that the flow velocities in the recirculation region, as shown in
Figure 5, are much smaller than the peak channel velocity. This result suggests why increased
pumping rates, which would increase the channel velocity, do not necessarily improve the
efficiency of pump-and-treat remediation in the porous media.

4. LATTICE–BOLTZMANN METHOD FOR THE STUDY OF THE DISPERSION

An LB scheme for simulating a reaction–diffusion system was introduced by Dawson et al.
While they used a hexagonal lattice, the following equation is recovered for the reaction–
diffusion system for the square lattice (nine-speed model):

(ns

(t
+9 · (nsu)−c s

2�ts−
1
2
�
92ns=Rs, (21)

Figure 3. Co-ordinates of various points on a (a) 41×1000 lattice of the channel, and (b) 241×1000 lattice of the
expansion–contraction geometry.
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Figure 4. Velocity profiles for Poiseuille flow between two parallel plates with the (a) bounce back boundary condition
(t=0.664); (b) energy boundary condition (t=0.66).

where ns is the concentration of the species s and Rs is the reaction rate for species s. The
diffusivity of species s is given by

Ds=c s
2(ts−0.5), (22)

where cs is the velocity of sound and ts is the relaxation time for species s.
Dawson et al. [10] expressed the equilibrium distribution of the tracer ( fsi(s)

eq ) in terms of the
equilibrium distribution of the solvent ( fsi

eq) and the ratio of their densities (ns/n0) as

fsi(s)
eq =

ns

n0

fsi
eq. (23)

4.1. Boundary conditions for the dispersion problem

In the simulation of tracer dispersion, a no-flux boundary condition needs to be applied at
the walls. The bounce back condition can approximate zero flux at the walls since the LB
particles are reflected back into the flow system.

Dispersion was studied by imposing a step input in the tracer concentration at the inlet and
comparing the mean (cup-mixed) concentration at a specified downstream location. The inlet

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 801–819 (1999)
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distributions for the tracer were calculated using the inlet distributions of the main fluid
(solvent):

fsi(s)=
ns

n0

fsi. (24)

Figure 5. Comparison of the x and y component velocities between the LB method and FIDAP at x=520 and along
the y-axis using the bounce back and the energy boundary conditions: (a) x component velocity using bounce back;
(b) x component velocity using the energy boundary condition; (c) y component velocity using bounce back; (d) y

component velocity using the energy boundary condition.
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Figure 5 (Continued)

4.2. Application of the LB method to study Taylor–Aris dispersion in a channel

Taylor [21] and Aris [22] showed that when Rs=0, Equation (11), in certain conditions
reduces to the following convection–dispersion equation:

(Cm

(t
+U

(Cm

(x
=D

(2Cm

(x2 , (25)

where U is the average velocity, D is the dispersion coefficient and Cm is the mean
concentration at a cross-section of a pipe. They are given by following expressions:

D=Dm+
d2U2

48Dm

, (26)

Cm(x)=

& 2p

0

& R

0

C(r, x)r dr du& 2p

0

& R

0

r dr du

. (27)

The above equation can be written in dimensionless form as follows:

(C %m
(t %

+
(C %m
(x %

=
D

Ud
(2C %m
(x %2

, (28)

where

Figure 6. Recirculation vortices on either side of the expansion–contraction geometry.
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C %m=Cm/Cm0, (29)

t %=
t

(d/U)
(30)

and

x %=
x
d

. (31)

U is the average velocity. For the flow in a circular pipe, U=0.5Umax.
For flow between two parallel plates separated by height h, U= (2/3)Umax, and the

coefficient of dispersion is given by [14]:

D=Dm+
h2U2

210Dm

. (32)

The dimensionless convection–dispersion equation is given by (28) with d=h, and dimension-
less time and distance are given by (30) and (31) with d=h.

There is an analytical solution to Equation (25) for the following initial and boundary
conditions:

Initial condition:
t=0, Cm=Cm0 at x=0, Cm=0 at x\0.

Boundary conditions:
Cm=Cm0 at x=0 for all t,
Cm=0 at x=L for all t.

The analytical solution is

Cm

Cm0

=
1
2

exp
�xU

D
�

erfc
� x+Ut

2.0 
Dt

�
+

1
2

erfc
� x−Ut

2.0 
Dt

�
. (33)

The dispersion problem has been solved using the LB scheme for the case of Poiseuille flow
between two parallel plates. The simulations were performed for the following lattice sizes:
11×1000, 21×1000 and 41×1000. For the solvent, a parabolic velocity profile was imposed
at all cross-sections of the channel with a maximum velocity of 0.1 at the center. When the
steady state for the solvent was achieved, a step input of the tracer was introduced at the inlet
of the channel in accordance with the following equation:

fsi(s)=
ns

n0

fsi. (34)

Plots of mean tracer concentration obtained from the LB simulations, at various times, as
a function of distance from the inlet of the channel were compared with the analytical
solutions. Figure 7 summarizes the comparison between the LB results for t=0.7 and the
analytical solutions from the Taylor–Aris theory using Equation (33).

The LB simulation carried out on a 41×1000 lattice for t=0.7 and Vx max
=0.1 can be

related to a typical tracer dispersion problem with realistic physical parameters.

Example
A step input of the tracer is imposed at the inlet of a capillary of size 1 mm diameter through
which water is moving with an average velocity of 1.2638 m day−1 (a typical pore velocity,
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Figure 7. Comparison between the LB results for dispersion in a channel at ts=0.7 and the analytical solutions from
the Taylor–Aris theory using Equation (33).

assuming a parabolic velocity profile). The tracer has a diffusivity of 2.35×10−9 m2 s−1.
Calculate the actual physical time which corresponds to the concentration profile of the tracer
obtained after 10000 lattice times in the LB method.

Solution
The Peclet number is given by

Pe=
Uh
D

, (35)

where U is the average velocity= (2/3)Umax; h is the channel width and D is the dispersion
coefficient. Using Equation (31),

DLB=0.5007 (36)

and

PeLB=
0.06666×41

0.5007
=5.458. (37)

D(real problem)=2.68×10−9 (38)

and

Pe(real problem)=5.458. (39)

Since the Peclet numbers are the same in both cases, the dimensionless times can be compared.

t %=
t

(h/U)
. (40)

Using t %(LB)= t %(real problem), it is found that t=21.128 min.

Figure 7 plots the concentration as a function of distance along the channel (measured in
lattice units). With reference to the problem considered above, each lattice unit in Figure 7
corresponds to 1/41 mm.
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4.3. Results of dispersion in the expansion–contraction geometry

The dispersion simulations were also carried out for a 241×1000 lattice for the expansion–
contraction geometry. Results are presented for t=0.7 and t=10.0. For the study of
dispersion, steady state flow was first achieved as mentioned earlier. At steady state, a step
input of tracer was introduced at the inlet (x=1) according to Equation 34, and the cup-mixed
mean concentration was monitored at the cross-section, where x=650 (downstream of the
contraction). Figure 8(a) and (b) plot the cup-mixed mean concentration as a function of time
for t=0.7 and t=10 respectively.

A plot of dimensionless point concentration of the tracer at x=520 (halfway through the
dilation) at time t=50000 is shown in Figure 9(a) and (b) for t=0.7 and t=10 respectively,
and is compared with results from FIDAP. As can be seen from the comparison of the
cup-mixed mean concentration and the point concentration at t=0.7, there is excellent
agreement between the LB method and FIDAP. For t=10.0, the agreement is not so good.

Figure 8. Dispersion in the expansion–contraction geometry. Plots of mean concentration at x=650 as a function of
time for (a) t=0.7 and (b) t=10.
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Figure 9. Plot of dimensionless point tracer concentration at x=520 (half way through the dilation) at time t=50000
for (a) t=0.7 and (b) t=10.

4.4. Error analysis for dispersion

The effect of the value of t and lattice refinement has been studied in the case of
Taylor–Aris dispersion. For the solvent, a parabolic velocity profile was imposed at all
cross-sections of the channel with a maximum velocity of 0.1 at the center, for 11×1000,
21×1000 and 41×1000 lattice. When the steady state for the solvent was achieved, a step
input of the tracer was introduced at the inlet of the channel. The mean tracer concentration
obtained from the LB simulations, at 5000 lattice time units at a distance from the inlet of the
channel were compared with the analytical solutions. The quantity cm(LB)/cm(Theoretical) at the
point where mean concentration should be 0.5Cm0 (based on the analytical solution) has been
plotted as a function of t/h, which is proportional to the Knudson number. It may be seen
from Figure 10 that the error in the mean concentration is minimal until t/hB0.08 (for the
range of t between 0.7 and 10.0). It was also observed that for a given lattice, error in the
tracer calculations reaches a minimum at t=1.0.

5. LEAKY WALLS IN THE LB METHOD

Leaks in the population of LB fluid particles are natural to the LB method, especially in the
case of the energy boundary conditions. At each time step, LB particles leave and enter from

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 801–819 (1999)
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Figure 10. Cm(LB)/Cm(theoretical) at the point where mean concentration should be (based on the analytical solution)
0.5Cm0 has been plotted as a function of t/h using results obtained by 11×1000, 21×1000 and 41×1000 lattices.

the boundaries. A mismatch between the incoming and outgoing masses (no matter how
small), leads to a diminution/addition of the mass of LB fluid particles, causing so-called
‘leaky’ walls. However, the presence of leaky walls does not mean that the actual fluid being
simulated is leaking from the walls. The kinematic viscosity of the LB fluid is independent of
density (depends on value of the t) indicating that a change in density at a point will cause a
change in viscosity of the LB fluid particles at that point, hence, the Reynolds number being
simulated will not be effected.

It was also observed that leaks are a direct consequence of the compressibility of the LB
fluid. The leak of the LB particles approaches zero as the Mach number approaches zero.
Figure 11 shows the results of the two simulations carried out for channel flow. In the first
case, the center velocity of the parabolic profile imposed at the inlet and outlet of the channel
was 0.1 (Vx avg

=0.0666), and in the second case, the velocity at the center was 0.05 (Vx avg
=

0.0333). It may be seen from the Figure 11 that when the velocity at the center was 0. 1, an
initial system mass of 21000 becomes about 25000 at steady state, whereas in the second case,
when the velocity at the center is 0.05, the system mass at the steady state becomes about
22000. In general, system mass may increase or decrease as a function of time, depending on

Figure 11. System mass as a function of the lattice time in case of the channel flow.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 801–819 (1999)
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Figure 12. The x component of the velocity at x=520 along the y-direction as a function of time using (a) FIDAP
and (b) the LB method.

geometry, t and velocity. In all the cases, leaking decreases as the steady state solution is
approached. This criterion may be used to check whether the steady state is reached or not.

6. TRANSIENT SOLUTION

A comparison between the LB method and FIDAP was carried out for the analysis of
transients in the expansion–contraction geometry. Figure 12(a) and (b) plots the x component
of the velocity at x=520 as a function of lattice time. It is natural to have the discrepancy
between the LB method and FIDAP in the initial time interval because whereas the speed of
sound in the LB method is finite, it is infinite when we solve the incompressible Navier–Stokes
equation using FIDAP. As a result, while a disturbance in the fluid takes a finite amount of
time to move from one point to another in the LB method, it is felt immediately throughout
the flow domain in the incompressible FIDAP solution. However, once the effect of the
disturbance has propagated in the flow domain, the results of the LB method and FIDAP
come closer and closer.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 801–819 (1999)
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7. PRESSURE-DRIVEN FLOW

Pressure driven flow can be solved using the LB method using energy boundary conditions.
The pressure gradient can be set between the inlet and outlet ends of the pipe by imposing a
density gradient, since the density is proportion to the pressure. The incoming values of the fsi

can be calculated using Equations (16)–(20). Results for pressure-driven Poiseuille flow are
shown in Figure 13(a) and (b). The pressure drop in this simulation was achieved by imposing
a density difference between the inlet and outlet (r=1.0 at the inlet and r=0.95 at the outlet).
Energy boundary conditions were then applied at the inlet, the outlet and the walls to calculate
the unknown fsi. The density gradient along the length of the pipe at steady state is shown in
Figure 13(b). There was no variation in density across the channel. A comparison of the
velocity profile calculated from the LB method with the analytical result is shown in Figure
13(a). Excellent agreement is seen between theory and the LB simulation indicating the utility
of the energy boundary condition in solving pressure-driven flows.

Figure 13. (a) Velocity profiles for pressure-driven flow between two parallel plates. (b) Density profile along the
channel.
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8. SUMMARY

We have successfully demonstrated the application of the LB method to two problems related
to the study of flow and dispersion in a porous media: Poiseuille flow and flow in an
expansion–contraction geometry. Bounce back and energy boundary conditions were tested
for the flow problem in the expansion–contraction geometry and an excellent agreement was
found with results obtained using FIDAP. For dispersion, t values in the range 0.7–10 were
investigated. It was found that the error in the dispersion results become minimum at t=1.

Results for transient flow in an expansion–contraction geometry obtained using the LB
method and FIDAP were also compared, and it was found that at the short times, LB results
do not quite agree with the results obtained using FIDAP. The disagreement was attributed to
the finite velocity of sound implicit in the LB method. Another problem of interest, pressure-
driven flow was investigated, and the utility of the energy boundary condition was
demonstrated.

The LB technique is easily implemented on parallel architecture. Complex boundaries are
also easily implemented, which makes it suitable for the study of flow in porous media.

ACKNOWLEDGMENTS

This work was sponsored in part by the Army High Performance Computing Research Center
under the auspices of the Department of Army, Army Research Laboratory cooperative
agreement number DAAH04-95-20003/contractc DAAH04-95-C-0008, the content of which
does not necessarily reflect the position or policy of the government and no official endorse-
ment should be inferred. Computational resources were partly provided by the Minnesota
Supercomputer Institute (MSI). D.M.K. acknowledges support from the National Science
Foundation under Grant No. DMR-9405824 and donors of the Petroleum Research Fund,
administered by the ACS.

APPENDIX A. NOMENCLATURE

cs velocity of sound
point concentration of the tracerC

C0 concentration of the tracer at the inlet
mean concentration of the tracerCm

dimensionless mean concentration of the tracerCm%
inlet mean concentration of the tracerCm0

difference in mean concentrationDCm

d diameter of the pipe
dispersion coefficient of the tracerD

Dm molecular diffusivity of the tracer
e00 null velocity vector
e1i, e2i, velocity unit vector directions
i=1–4
f distribution function for the main fluid

particle distribution function for component s and velocity direction ifsi

tracer distribution functionfsi(s)
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equilibrium particle distribution function for component s and velocity di-fsi
eq

rection i
equilibrium particle distribution function for component s and direction ifsi(s)

eq

for the tracer
height of the channelh

ns tracer concentration (LB)
n0 desnsity of the main fluid (LB)

pressurep
Pe Peclet number

radius of the piper
Rs reaction rate
t time

dimensionless timet %
u velocity vector

mean velocity of the fluidU
x component of the velocityVx

y component of the velocityVy

average x component of the velocityVx avg

maximum x component of the velocityVx max

x x distance
x % dimensionless x distance

Greek letters

lattice Boltzmann internal energyo

d Knudsen number
n kinematic viscosity

density of pseudo-fluid particlesr

t relaxation time for the main fluid
relaxation time for tracerts

Vsi collision operator
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